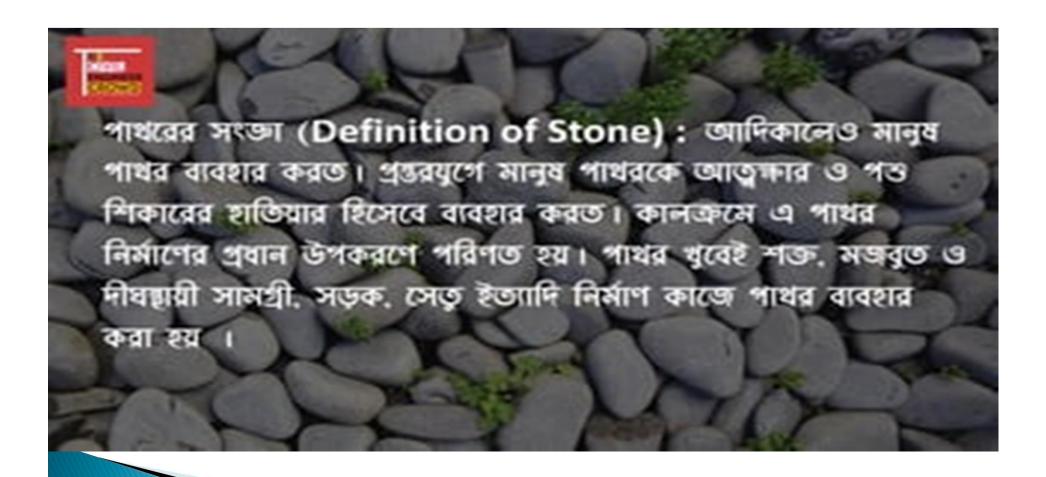
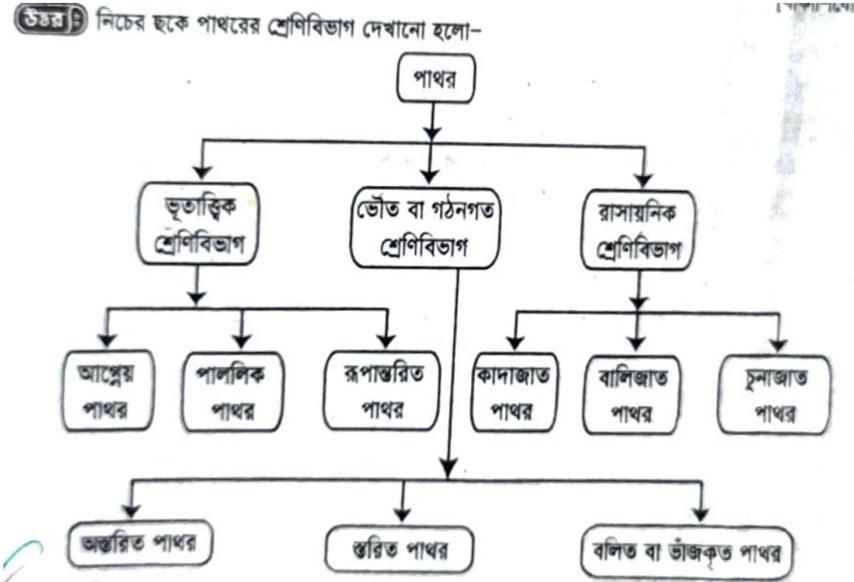
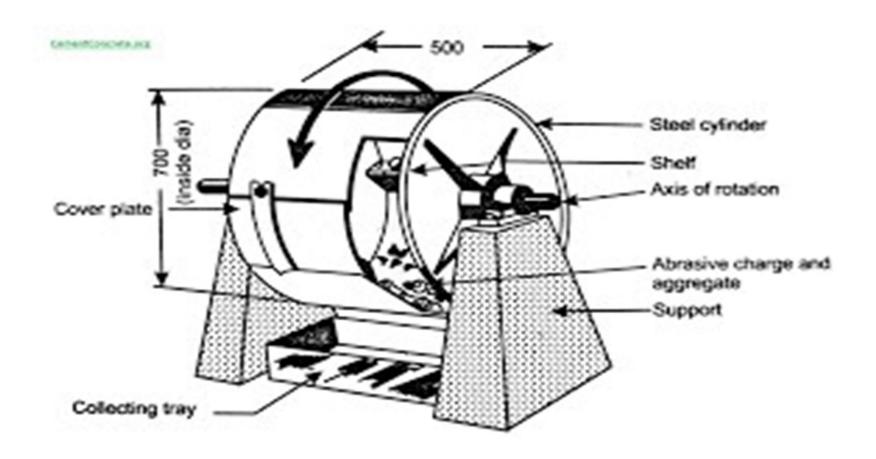
PRESENTATION


SUBJECT NAME: CIVIL ENGINEERING MATERIALS


SUBJECT CODE: (26411)

Presented By:


AKRAMUL HOQUE

Part Time Jr. Instructor (Civil)
Sirajganj Polytechnic Institute, Sirajganj

Abrasion Test for Stone

Abrasion Test

জে) কররেখিতা পরীকা (Abrasion test) ই লস আজেলস আব্রেশন টেস্টের জন্য চিত্রানুরূপ (চিত্র ই ২.৫) লস আজেলস আব্রেশন টেস্ট মেশিন ব্যবহৃত হয়। এ টেস্টের সাহায্যে আগ্রিগেটের ক্ষয়রেখিতার মাত্রা জানা যায়। এ যন্ত্রটি কাঁকা সিলিভারের মতো তবে এর দুই প্রান্ত বন্ধ। এর পার্শ্ব ব্যাস 70 সেমি এবং ভিতরের দৈর্ঘ্য 50 সেমি। এটা স্ট্যান্ডের উপর পেকে অনুভূমিক অক্ষের উপর তুরে। 4.8 সেমি (প্রায়) ব্যাসের 390 গ্রাম হতে 445 গ্রাম ওজনের কাস্ট আয়রনের বল বা ভটস্ (Ball or shots) আব্রেশন চার্ভ হিসাবে সিলিভারের ভিতরে দেয়া হয়। নমুনা আ্রিগেটের গ্রেডিং-এর উপর আ্রেশেন চার্জ হিসাবে প্রদন্ত বলের করে। বিভিন্ন গবেষণা প্রতিষ্ঠানের বিনির্দেশ মতো নির্দিষ্ট গ্রেডিং-এর আ্রিগেটের জন্য নির্দিষ্ট গুজন ও ব্যাসের নির্দিষ্ট সংখ্যক বল ব্যবহার করা হয়। এ যন্ত্রটিতে সিলিভারের দৈর্ঘ্য বর্ধাবর ব্যাসার্থীয় ভেন (Radial vane) স্থাপিত পাকে।

চিত্র ঃ ২.৫ লস আছেলস আব্রেশন টেস্ট মেশিন

বিনির্দেশিত আ্রেশন চার্জসহ নির্দিষ্ট নমুনা অ্যাহিগেটের 5 কেজি বা 10 কেজি (W₁) (অ্যাহিগেটের শ্রেভেশনের উপর ভিত্তি করে) যন্ত্রটির সিলিভারের ভিতরে দিতে হয়। অ্যাহিগেটের শ্রেভিং-এর উপর ভিত্তি করে সিলিভারকে প্রতি মিনিটে 30 বার হতে 33 বার হারে 500 বার থেকে 1000 বার ঘুরানো হয়। বিনির্দেশিত সংখ্যক ঘূর্ণন শেষে অ্যাহিগেটেওলোকে ইভিয়ান স্ট্যাভার্ত 17 মিমি চালুনিতে চেলে অভিক্রান্ত আ্রিগেটের ওজন নেয়া হয় (W₃) এবং ক্ষয়ের শতকরা হারে (বা, লস অ্যাক্রেলস অ্যাব্রেশন ভ্যালু) এ পরীক্ষার ফলাফল তৈরি করা হয়। আইএসআই (ISI) অনুসারে সিমেন্ট কংক্রিটের অ্যাহিগেটের অ্যাব্রেশন ভ্যালু 16%, বিটুমিনাস মিশ্ব-এর ক্ষেক্রে সর্বোচ্চ 30%, বিটুমিনাস বাউভ ম্যাকাডাম-এর বেস কোর্স-এ 50% এর মতো হতে পারে।

কলের শতকরা হার = $\frac{W_1}{W_1} \times 100$

অধ্যায়-৩ ইট ও হলো ব্লক (Brick & Hollow Block)

৩.১ ইটের সংজ্ঞা (Definition of bricks) 8

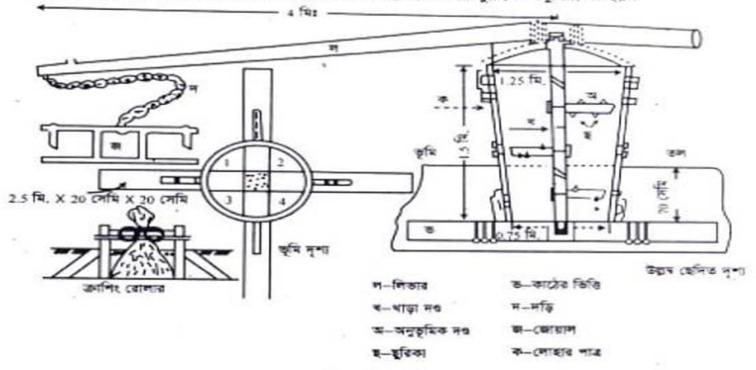
মাটি দিয়ে তৈরি ও পোড়ানো নির্মাণ ও ব্যবহার্য সামগ্রী সুপ্রাচীন কাল হতেই মানুষ ব্যবহার করে আসছে। মৃত্তিকার কাদায় তৈরি বিভিন্ন নির্মাণসামগ্রী ও ব্যবহার্য সামগ্রীকে কাদাজাত সামগ্রী (Clay products) বলা হয়। কাদাজাত সামগ্রীর মধ্যে (ক) ইট (Bricks), (খ) দুর্গল ইট (Refractory bricks), (গ) টেরাকোটা (Terracotta), (ঘ) টালি (Tiles), (ঙ) পোর্সেলিন (Porcelin), (চ) শিলাপণ্য (Stonewares), (ছ) মৃৎপণ্য (Earthenwares), (জ) সচ্ছিদ্র পাইপ (Porous pipe) অন্যতম।

এ সকল কাদাজাত সামগ্রীগুলোর মধ্যে ইমারত নির্মাণে ইটের ব্যবহার সর্বাধিক। ইট কাদার তৈরি আয়তাকার কঠিন ঘনবস্তু। এগুলো কাঁচা অবস্থায় ভিজালে নমনীয় হয় এবং উচ্চতাপে পোড়ানোর পর কৃত্রিম পাথরের ন্যায় দৃঢ়তা লাভ করে।

উৎকৃষ্ট ইটের মান নিম্নোক্ত বিষয়গুলোর উপর নির্ভর করে–

- ইটে ব্যবহৃত কাদার রাসায়নিক ধর্মের উপর।
- ২। ইটের কাদা প্রস্তুতকরণের উপর।
- ৩। ইট তকানোর পদ্ধতির উপর।
- ৪। চুল্লিতে ইট পোড়ানোর সময়ে চুল্লির তাপমাত্রার উপর।
- ৫। পোড়ানোর সময় চুল্লিতে বায়ুপ্রবেশের পরিমাণের উপর।

৩.১.১ উভম ইটের (PWD বিনির্দেশিক) বৈশিষ্ট্য (Characteristics of good bricks) ঃ

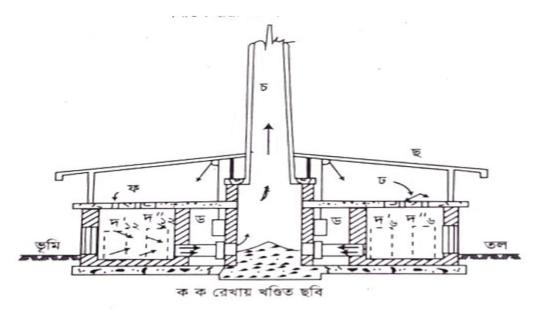

উত্তম বা প্রথম শ্রেণির ইটের বৈশিষ্ট্যসমূহ নিমরূপ-

- ১। উৎকৃষ্ট ইট বা প্রথম শ্রেণির ইট আকারে সুষম। এর তলগুলো সমান, কিনার ও কোনগুলো তীক্ষ্ণ এরং পাশগুলো সমাস্তবাল
- ২। এঞ্চলোর বাংলাদেশি মানসম্বন্ধ পরিমাপ 240 মিমি \times 112 মিমি \times 70 মিমি $\left(9\frac{1''}{2}\times4\frac{1''}{2}\times2\frac{3''}{4}\right)$ অপেকা 3 175 মিমি $\left(\frac{1''}{6}\right)$ কম বা বেশি হতে পারে।
- ত। সাহ্য কর্ণ এ ধরনের ইটের জন্যতম বৈশিষ্ট্য, কারণ বর্ণের সাহ্যতা ইটের পোড়ানো ও রাসায়নিক গঠনের সহজ্পতার পরিমাপক। উৎকট ইট সাধারণত গাঢ় লাল বা তমে বর্ণের হয়ে থাকে।
- ৪। উৎকট ইটের কাঠিনা এমন যে, এতে নখ বা ছুরি দিয়ে আঁচড় কাটা যায় না, হাতুড়ি বারা আঘাত করলে ঝন ঝন লফ হয়।
- ইংরেজি টি (T) অক্ষরের ন্যায় ছাপন করে 1.5 হতে 1.7 মিটার উঁচু হতে স্বাভাবিক শক্ত মাটির উপর স্বাভাবিক অবস্থায় ছেডে দিলে এ ধরনের ইট ভাঙে না।
- ৬। এ ধরনের ইট সুবদ্ধ এবং মিহি ও সমবুনটযুক্ত। এ ইট ভাঙলে ভগুতলে কোনোরূপ চিড়, চুনের কণা বা বুদবুদ নৃত্তী হয় না
- ৭। ইট প্রধানত চাপ পীড়ন বহন করে এবং উৎকৃষ্ট ইটের বিচূর্ণন শক্তি 400-700 টন/বর্গমিটার।
- ৮। এ ধরনের ইটের প্রতিটির ওজন প্রায় 3.125 কেজি (প্রচলিত বাংলাদেশি মানসম্মত ইট) এবং প্রতি ঘনমিটার গাঁগ্নি এব ওজন 1892 কেজি এর কম নয়।
- ৯। উৎকৃষ্ট ইটের পানি বিশোষণ এর তম্ক অবস্থায় ওজনের 1/5 অংশ হতে 1/7 অংশ (15% হতে 20%) এর অধিক নয়
- ২০। উৎকৃষ্ট ইটে দ্রাব্য লবণের (পটাশিয়াম, সোডিয়াম, ক্যালসিয়াম ও ম্যাগনেশিয়াম-এর সালকেট) পরিমাণ $2\frac{1}{2}$ % এব অধিক নয়। কারণ অধিক পরিমাণ দ্রাব্য লবণ গাঁপুনি পৃষ্ঠে উদ্ ত্যাণের সৃষ্টি করে, যা গাঁপুনিকে স্থায়ীভাবে অর্দ্রে ও স্যাতসেতে করে।
- ১১। ইটের তৈরি ইমারত শ্রীমে শীতল এবং শীতে উষ্ণ হওয়া প্রয়োজন বিধায় উৎকৃষ্ট ইটের তাপ পরিবাহিতা ন্যনতম
- ১২। উৎকৃষ্ট ইট দাহ্য নয় ও দহনে সহায়তা করে না। অধিক সিলিকাযুক্ত ইট তুলনামূলকভাবে অগ্নিরোধী। উৎকৃষ্ট ইটোর তৈরি ইমারত সন্তোষজনকভাবে অগ্নিরোধী।
- ১০। উৎকৃষ্ট ইট পানিতে ভিজাপে আয়তনে পরিবর্তন হয় না।

১। সিলিকা (SiO ₂)	55%
২। অ্যালুমিনা (Al ₂ O ₃)	30%
৩। আয়রন অক্সাইড (Fe ₂ O ₃)	8%
৪। ম্যাগনেশিয়া (MgO)	5%
৫। লাইম (CaO)	1%
৬। জৈব পদার্থ	1%
মোট	100%

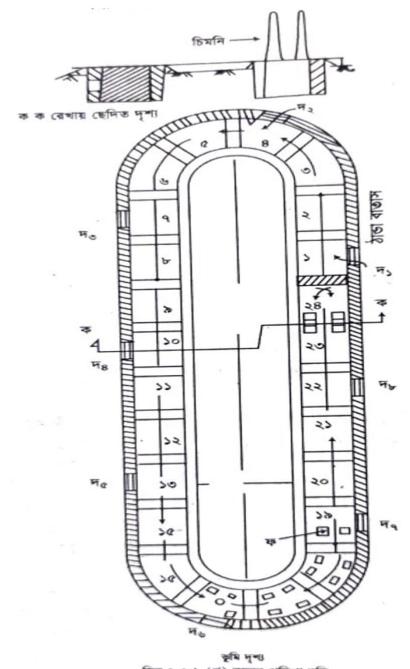
. . .

পাগমিশ (Pugmill) ঃ পাগমিল একটি গোলাকার লোহার পাত্রবিশেষ। এর আকৃতি অনেকটা তলাহীন বালতির মতো। সাধারণত এর উচ্চতা 1 মিটার হতে 2 মিটার, উপরের ব্যাস 1 মিটার হতে 1.5 মিটার, নিচের ব্যাস 0.75 মিটার হতে 1 মিটার। এব উপরের প্রান্তে 1 মিটার ব্যাসের পরিমিত স্থান খোলা থাকে। এর কিয়দংশ ভূমিতলের নিচে বসান থাকে খেন অতিরিক্ত উচ্চতার জনা উপরের খোলা স্থানে সাধারণভাবে মিশ্রিত মাটি দিতে এবং পক্তর সাহায্যে লিভার মুরাতে অসুবিধা না হয়।



ডিত্র ঃ ৩.১ পাগমিল

এর কেন্দ্রে একটি খাড়া দও বসানো থাকে, যা লিভারের সাহায্যে ঘুরানো যায় (বর্তমানে বিদ্যুৎশক্তি ব্যবহার করে যান্ত্রিক উপায়ে খাড়া দওটি ঘুরানো যায়)। খাড়াদওের সাথে ছুরিকা সমেত অনুভূমিক দওসমূহ চিত্রানুত্রপ সংযুক্ত থাকে। লিভার ঘুরানোর ফলে খাড়া দও ঘোরে এবং সাথে সাথে অনুভূমিক দওও ছুরিকা সমেত ঘোরে। (ভূমি ছবিতে প্রদর্শিত) দুটি কাঠের উপর লোহার পারটি বসানো হয়। নিচের ফোকরওলোর মধ্যে 1, 2, 3নং ফোকর ছায়ীভাবে বন্ধ করে দেয়া হয় এবং ধনং ফোকরটি সাময়িকভাবে বন্ধ রাখা হয়।


কার্যাঞ্জনা ঃ উপরের খোলা পথে মাটি (প্রয়োজনীয় পানিসহ) দেয়া হয় এবং লিভারটি জন্তুর সাহায্যে বা যান্ত্রিক উপায়ে
মুরানো হয়। ফলে খাড়াদও মুরে এবং সাথে সাথে মুরিকা সমেত অনুভূমিক দণ্ডও মুরে এবং উত্তমরূপে মহুন না হওয়া পর্যন্ত 4 নং
কোকর খুলে দেয়া হয় না। উত্তমরূপে মহুন শেষ হলে 4 নং ফোকর খুলে দেয়া হয় এবং উপরের খোলা পথে প্রয়োজন অনুপাতে
পানিসহ (আংশিক মিল্রিত) মাটি দেয়া হয় এবং মহুনকৃত কালা 4 নং ফোকর দিয়ে স্বেগে নিচ দিয়ে বের হয়ে আসে। একজন
শ্রমিক উপরের খোলা পথে মাটি দিতে থাকে, আরেকজন শ্রমিক মহুনকৃত কালা ইট তৈরির জন্য সরবরাহ করে। ভালোভাবে মিশুনের
জন্য মিলটি সবসময় মাটি ভর্তি রাখতে হয়।

ইটের জন্য নির্বাচিত মাটি শক্ত খণ্ডাকারের হলে ক্রাশিং রোলারের সাহায্যে চূর্ণ করে নিতে হয়। এক্ষেক্সে কাস্ট আয়বন বা পাধরের রোলার প্রয়োজনানুযায়ী দূরত্ত্ব সিয়ে এদের ভিতর দিয়ে মাটির খণ্ড প্রবেশ করিয়ে চূর্ণ করা হয়।

দ্বিক্তি ক্ষিত্ত ক্ষি

চিত্র ঃ ৩.৬ (ক) হক্ষ্যানের চুল্লি

চিত্ৰ ঃ ৩.৬ (খ) বুলের পরিখা চুল্লি

৩.৫ ইটের মাঠ পরীক্ষা (Field test of bricks) 8

ইট ভালো-মন্দ যাচাইকরণে 'ইটের মাঠ পরীক্ষা' (Field test of bricks) নিচে দেয়া হলো-

- একটি ইট নিয়ে এর পৃষ্ঠে নখের সাহায্যে আঁচড় কাটতে চেষ্টা করতে হবে। যদি আঁচড় কাটা যায় তবে ইটটি ভালো নয়। যদি আঁচড় না কাটা যায় তবে এটি দৃঢ়বদ্ধ গঠনের ভালো ইট।
- ২। একটি ইটকে অন্য একটি ইট বা হাতুড়ি দিয়ে আঘাত করতে হবে। যদি পরিষ্কার বাজনা বা ধাতব আঘাতের শব্দ হয় তবে এটি ভালো ইট।
- ত। দূটি ইট নিয়ে এদেরকে T-এর মতো স্থাপন করে 1.5 মিটার থেকে 1.7 মিটার উপর হতে স্বাভাবিক মাটির উপরে স্বাভাবিক অবস্থায় ছেড়ে দিলে যদি ভেঙে যায় তবে এটি ভালো ইট নয়, যদি না ভাঙে তবে ভালো ইট।
- ৪। একটি ইট ভেঙে টুকরা টুকরা করতে হবে। যদি এগুলোতে ছিদ্রের পরিমাণ অধিক পরিলক্ষিত হয়, তবে ইট ভালো নয়।
- ে ইটের টুকরাগুলো ভালো করে দেখতে হবে। যদি এগুলোতে বর্ণের ভিনুতা দেখা যায় তবে ইট ভালো নয়, কিন্তু যদি ঈশ্বৎ গাঢ় লাল বা তাত্র বর্ণের হয় তবে এটি ভালো ইট।

অধ্যায়–৪ বালি (Sand)

8.০ ভূমিকা (Introduction) 8

বালি একটি গুরুত্বপূর্ণ নির্মাণসামগ্রী। এগুলো মূলত শিলা কণাবিশেষ। কোয়ার্টজ-এর ক্ষুদ্র ক্ষুদ্র কণাই বালি হিসেবে পরিচিত। আবহাওয়ার ক্রিয়ায় বালির আকার-আকৃতিতে বৈষম্য পরিলক্ষিত হয়। বিভিন্ন গ্রেড (Grade) ও সাইজের বালি পাওয়া যায়। বালি কোয়ার্টজজাত, চুনাপাথরজাত ও কাদাজাত পাথর হতে পাওয়া যেতে পারে। বালির কণাগুলো কোনাদার (angular), গোলাকৃতিবিশিষ্ট (Rounded) বা স্ক্রাগ্রবিশিষ্ট (Sharp) হতে পারে। ASTM অনুযায়ী 4.75 মিলিমিটার হতে 0.075 মিলিমিটার আকারে খনিজ অ্যাগ্রিগেটই বালি।

8.১ উৎস অনুসারে বালির শ্রেণিবিভাগ (Classification of sand according to sources) ঃ

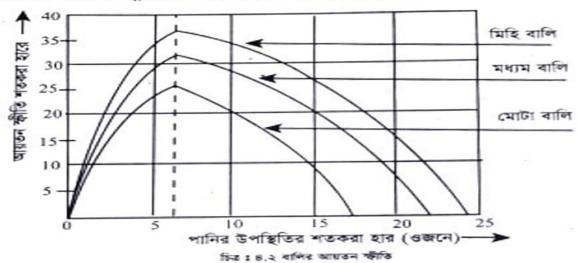
বালির শ্রেণিবিভাগ প্রধানত উৎস অনুসারে এবং আকার অনুসারে করা হয়ে থাকে।

উৎস অনুসারে বালির শ্রেণিবিভাগ ঃ আমরা প্রধানত তিনটি উৎস হতে বালি পেয়ে থাকি। সে মতে উৎস অনুসারে বালিকে তিন শ্রেণিতে ভাগ করা হয়, যথা—

- ১। গর্তের বালি (Pit sand)
- २। ननीत वानि (River sand)
- ৩। সমুদ্রের বালি (Sea sand)।

উদাহরণ-১০। নিচে 400 গ্রাম ওজনের নমুনা বালির চালুনি বিশ্লেষণ দেয়া হলো। বালির সৃক্ষতার শুণাঙ্ক (এফ.এম) নির্ণয় কর ঃ

निन नर	4	0	1/		-		, , , , , , ,
•	-	0	16	30	50	100	প্যান
সবশেষ (গ্ৰাম)	0	20	50	180	80	20	40


স্থাবার 🖲 নমুনা বালির ওজন = 400 গ্রাম

जिन्नी नश	অবশেষ (গ্ৰাম)	পুঞ্জীভূত অবশেষ (গ্রাম)	% পুঞ্জীভূত অবশেষ	সক্ষম কলেভ
4	00	00	00.00	সৃন্মতা তণাক
8	20	20	5.00	
16	50	70	17.50	
30	180	250	62.50	257.50
50	80	330	82.50	$\frac{257.50}{100}$
100	30	360	90.00	= 2.58
প্যান	40	_	-	- 2.50
		100	মোট 257.50	

উত্তর ঃ নমুনা বালির সূক্ষতা গুণান্ধ (এফএম) = 2.58

৪.৩.১ বালির আয়তন স্ফীতি (Bulking of sand) ঃ

বালিত্বে একটি নির্দিষ্ট মাত্রায় জলীয়কণা বিদ্যমান থাকলে বালি তার প্রকৃত আয়তন অপেক্ষা অধিক আয়তন প্রদর্শন করে।
এটাকে বালির আয়তন স্কীতি (Bulking of sand) বলা হয়। বালিতে 5% হতে ৪% (বালির ওজনের) জলীয়কণার উপস্থিতি
একলোর আয়তন 25% হতে 40% এর মতো বাড়িছে দেয়। সর্বোচ্চ আয়তন স্কীতির পর বালিতে আবও পানি দিলে বালি প্রকৃত
আয়তনে ফিরে আসে। তক বালিতে কম পরিমাণে পানি দিলে বালিকণার পৃষ্টে পানির প্রলেপন এবং পানির প্রকেশন ও বালিকণার
পৃষ্টের মাকে বাতাস আটকিয়ে আয়তন স্কীতি ঘটে ধাকে। বালিতে অধিক পরিমাণে পানি দিলে বালি নিমজ্জিত হওয়ার দক্ষন বালির
ফাঁকে আটকানো বাতাস বুদ্বুদ আকারে বের হয়ে আসে এবং বালি প্রকৃত আয়তনে ফিরে যায়। তক মিহি বালিতে 10% পানি নিলে
প্রায় 40% আয়তন স্কীতি হতে পারে। বালির আয়তন স্কীতি মোটা বালির তুলনায় মধ্যম মানের বালিতে অধিক এবং মিহি বালিতে
সর্বাধিক ঘটে। নিচের গৈখিক চিত্রে বিভিন্ন গ্লেভের বালির আয়তন স্কীতি দেখানো হলো—

বালির আয়তন স্ফীতি নির্ণয়ের জন্য নিদের সূত্রটি ব্যবহার করা হয় ঃ

$$b = \frac{V_m}{V_*} \times 100$$

এখানে, b = বালির আয়তন স্ফীতির শতকরা হার

V_n = ভিজা বালির আয়তন

V₁ = সম্পূর্ণরূপে সম্পৃক্ত বা সম্পূর্ণ বছ বালির আয়তন।

যেহেতু মসলা বা কংক্রিটে বালি আয়তনের পরিমাপে ব্যবহার করা হয়, তাই বালি পরিমাপ কালে বালির আয়তন স্কীতির প্রতি বিশেষ নজর দিতে হয়। কার্যক্ষেত্রে মসলা বা কংক্রিট প্রস্তুতকালে কিঞ্জিৎ ভেজা বালি ব্যবহার করতে হলে আয়তন স্কীতির সমপরিমাণ বালি অধিক দিতে হবে, অনাধায় ঘন (dense) মসলা বা কংক্রিট পাওয়া যাবে না।